Competitive ternary interactions and relative entropy of solutions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 276383
(http://iopscience.iop.org/0305-4470/27/19/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:06

Please note that terms and conditions apply.

Competitive ternary interactions and relative entropy of solutions

Yoshiaki Itoh \dagger and Joel E Cohen \ddagger
\dagger The Institute of Statistical Mathematics and the Graduate University for Advanced Studies, 4-6-7 Minami-Azabu Minato-ku, Tokyo 106, Japan
\ddagger Rockefeller University, 1230 York Avenue, Box 20, New York, NY 10021-6399, USA

Received 28 February 1994, in final form 8 August 1994

Abstract

For conservative linear systems (finite-state Markov processes in discrete or continuous time), the relative entropy of two distinct trajectories is a monotonically decreasing function of time. These results naturally raise the question whether distinct trajectories of nonlinear conservative systems also display monotonically decreasing relative entropy. For binary interacting Lotka-Volterra systems with anti-symmetry, the relative entropy oscillates under the motion. The main new result of this paper is that, for temary interacting Lotka-Volterra systems with anti-symmetry, the relative entropy of two distinct trajectories is a monotonically decreasing function of time near equilibrium. Far from equilibrium, distinct trajectories of ternary Lotka-Volterra systems with anti-symmetry need not have monotonically decreasing relative entropy.

1. Introduction

Classical Lotka-Volterra equations (Lotka 1925, Volterra 1931) model pairwise interactions of individuals and, by extension, pairwise interactions of species. For example, let $p_{i}(t)$ be the fraction of individuals who belong to species i at time t. Kimura (1958) and Mather (1969) studied the model

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} p_{i}(t)=p_{i}(t) \sum_{j=1}^{m} a_{i j} p_{j}(t) \quad \text { for } \quad t \geqslant t_{0} \quad \text { where } \quad a_{i j}+a_{j i}=0 \\
& p_{i}\left(t_{0}\right)>0 \quad \sum_{i=1}^{m} p_{i}\left(t_{0}\right)=1 \quad \text { for } \quad i, j=1,2, \ldots, m .
\end{aligned}
$$

These are quadratic differential equations because products of $p_{l}(t)$ appear on the right. Quadratic differential equations have been analysed using non-associative algebras by Markus (1960), McKean (1966), and Kaplan and Yorke (1979). By an analogy with the kinetic theory of gases, Itoh (1971, 1973, 1975, 1979, 1981) derived these Lotka-Volterra equations from a model of random collisions of particles of different species and used non-associative algebra to analyse the equations. Under the assumption of anti-symmetry $a_{i j}=-a_{j i}$, a well known important characteristic of these equations is that there exists a potential function that is conserved under the motion of the system (Kerner 1957, 1959, Goel et al 1971). It follows that if the initial condition of the system differs from equilibrium, then the system never approaches equilibrium.

Binary interactions may not be sufficient to model all situations of biological interest. At high population densities, three, four or more individuals may interact as for the Boltzmann equation for higher densities (Cohen 1973, Sengers 1973). As Mather (1969) stated, a plant may feel the effects of competition from a number of other individuals growing at various distances from it and interacting with one another in their effects on it. Models with ternary interactions have been investigated at least since Hutchinson (1947); Goel et al (1971, pp 266-9) review many other generalizations. Itoh (1975, 1981) analysed a differential equations model with ternary interactions using non-associative algebra. He proved that a certain Lyapunov function (given explicitly in theorem 1 below) increases until the system attains equilibrium. For the corresponding model with only binary interactions, the same Lyapunov function is invariant with respect to time. Thus the term that represents ternary interactions makes a qualitative difference to the model's behaviour and justifies, from the mathematical point of view, the study of models with ternary and higher-order interactions. A simulation study of competing species in which individuals are located on a regular lattice (Tainaka 1988, Tainaka and Itoh 1991) shows a stability that could be explained by the mathematical results on ternary and higher-order interactions.

From the empirical point of view, if an increase in the density of many interacting species were observed to lead to an increase in the stability of the size of the interacting populations, the difference between models with binary interactions and the models with ternary interactions might provide one explanation. Of course, one would have to investigate and exclude alternative explanations, such as a possible loss of the exact anti-symmetry condition as a result of increased population density.

For conservative linear systems (finite-state Markov processes in discrete or continuous time), it has been known for a long time (Moran 1961, Morimoto 1963, Csiszár 1963) that the relative entropy of two distinct trajectories is a monotonically decreasing function of time. Cohen et al (1993a, b) give the following improvement. Let p and r be two m-element probability vectors with positive elements. The relative entropy $H(p, r)$ of p and r is defined by $H(p, r)=\sum_{i} p_{i} \log \left(p_{i} / r_{i}\right)$. If A is an $n \times m$ matrix with elements $a_{i j} \geqslant 0$ such that $\sum_{t} a_{i j}=1, j=1, \ldots, m$, then $H(A p, A r) \leqslant \bar{\alpha}(A) H(p, r)$, where $\bar{\alpha}(A)=\left(\frac{1}{2}\right) \max _{j, k} \sum_{i=1}^{n}\left|a_{i j}-a_{i k}\right| \leqslant 1$. An analogous result for Markov processes in continuous time bounds $\mathrm{d} \log H(p(t), r(t)) / \mathrm{d} t$ below zero.

These results naturally raise the question whether distinct trajectories of nonlinear conservative systems also display monotonically decreasing relative entropy. For binary Lotka-Volterra systems with anti-symmetry, the answer is no, because the relative entropy oscillates under the motion (Kerner 1957, 1959, Goel et al 1971). The main new result of this paper (theorem 2) is that, for ternary Lotka-Volterra systems with anti-symmetry, the answer is yes near equilibrium. Far from equilibrium, distinct trajectories of ternary Lotka-Volterra systems with anti-symmetry need not have monotonically decreasing relative entropy.

2. Random collision model for competitive interaction and non-associative algebra A^{m} for a Lotka-Volterra equation

We consider the following random collision model.
(i) There are m species labelled $1,2, \ldots, m$ whose numbers of particles are, at time t, $n_{1}(t), n_{2}(t), \ldots, n_{m}(t)$, respectively, with $n_{1}(t)+n_{2}(t)+\cdots+n_{m}(t)=n$, where n is constant.
(ii) Each particle collides with another particle on average $\mathrm{d} t$ times per time length $\mathrm{d} t$.
(iii) Each particle is in a chaotic bath of particles. Each colliding pair is equally likely to be chosen.
(iv) For $i, j=1,2, \ldots, m$, by a collision, a particle of species i and a particle of species j become two particles of species i with probability $\frac{1}{2}+a_{i j}$, and two particles of species j with probability $\frac{1}{2}-a_{i j}$, where $a_{i j}=-a_{j i}$ and $-\frac{1}{2} \leqslant a_{i j} \leqslant \frac{1}{2}$.
When n is sufficiently large, we can derive equations in the following way.
Each of $\left(\left(n_{j}(t) / n\right) \mathrm{d} t\right) n_{i}(t)$ particles of species i collides with a particle of species j and remains in species i with probability $\frac{1}{2}+a_{i j}$. Each of $\left(\left(n_{i}(t) / n\right) \mathrm{d} t\right) n_{j}(t)$ particles of species j collides with a particle of species i and changes to species i with probability $\frac{1}{2}+a_{i j}$. So we have
$n_{i}(t+\mathrm{d} t)=n_{i}(t)(1-\mathrm{d} t)+\frac{n_{i}(t) \mathrm{d} t}{n}\left\{\sum_{j=1}^{m}\left(\frac{1}{2}+a_{i j}\right) n_{j}\right\}+\left\{\sum_{j=1}^{m}\left(\frac{1}{2}+a_{i j}\right) \frac{n_{j}(t) \mathrm{d} t}{n}\right\} n_{i}(t)$
$\mathrm{d} n_{i}(t)=n_{i}(t+\mathrm{d} t)-n_{l}(t)$.
Put $n_{i}(t) / n=p_{i}(t)$, then we have

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} t} p_{i}(t)=p_{i}(t)\left(\sum_{j=1}^{m}\left(\frac{1}{2}+a_{i j}\right) p_{j}(t)\right)+\left(\sum_{j=1}^{m}\left(\frac{1}{2}+a_{i j}\right) p_{j}(t)\right) p_{i}(t)-p_{i}(t) \\
=2 p_{i}(t)\left(\sum_{j=1}^{m} a_{i j} p_{j}(t)\right) \quad \text { for } \quad i=1,2, \ldots, m . \tag{2}
\end{gather*}
$$

We define the following non-associative algebra A^{m} to extend our discussion to ternary and higher-order interactions.

Definition. The non-associative algebra A^{m} is defined as follows:
(I) $A^{m}=\left\{\sum_{i=1}^{m} x_{i} E_{l} \mid x_{i} \in R, i=1,2, \ldots, m\right\}$
is an m-dimensional linear space over a field R (which here is always the real numbers) which is generated by linearly independent elements $E_{i}, i=1,2, \ldots, m$.
(II) The products of the basis elements are defined as

$$
E_{i} \circ E_{j}=\left(\frac{1}{2}+a_{i j}\right) E_{i}+\left(\frac{1}{2}+a_{j i}\right) E_{j}
$$

where

$$
a_{i j}=-a_{j i} \quad \text { and } \quad-\frac{1}{2} \leqslant a_{i j} \leqslant \frac{1}{2} .
$$

(III) The product $x \circ y$ of two elements

$$
x=\sum_{i=1}^{m} x_{i} E_{l}, y=\sum_{j=1}^{m} y_{j} E_{j} \in A^{m}
$$

is defined as

$$
\sum_{i=1}^{m} x_{i} E_{i} \circ \sum_{j=1}^{m} y_{j} E_{j}=\sum_{i, j=1}^{m} x_{i} y_{j}\left(E_{i} \circ E_{j}\right) .
$$

A^{m} has the following properties.

Property 1. We see from the above definition that

$$
E_{i} \circ E_{j}=E_{j} \circ E_{i} \quad E_{i} \circ E_{i}=E_{i}
$$

Thus the algebra is commutative.
Hereafter we write the i th component of $x \in A^{m}$ as x_{i}.

Property 2. For $x, y \in A^{m}$, we have

$$
\sum_{i=1}^{m}(x \circ y)_{i}=\sum_{i, j=1}^{m} x_{i} y_{j}=\left(\sum_{i=1}^{m} x_{i}\right)\left(\sum_{j=1}^{m} y_{j}\right) .
$$

Using the non-associative algebra A^{m}, equation (2) is expressed by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} p(t)=p(t) \circ p(t)-p(t) \tag{3}
\end{equation*}
$$

The system with ternary interactions is represented by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} p(t)=k_{1}(p(t) \circ p(t)-p(t))+k_{2}((p(t) \circ p(t)) \circ p(t)-p(t)) \quad \text { for } \quad p(t) \in A^{m} \tag{4}
\end{equation*}
$$

Using property 2 , it is obvious that $\sum_{i}((p(t) \circ p(t)) \circ p(t))_{i}=\sum_{i}(p(t) \circ p(t))_{i}=$ $\sum_{i}(p(t))_{i}=1$, hence the binary system and the ternary system are conservative, i.e. $\sum_{i} \mathrm{~d} p_{i}(t) / \mathrm{d} t=0$. At first glance, definition (3) of the system with ternary interactions appears to have a strange asymmetry in it. Why does the right-hand side not contain an additional term $k_{3}(p(t) \circ(p(t) \circ p(t))-p(t))$? The answer is that, because the algebra A^{m} is commutative, the term that is apparently missing would be exactly equivalent to the existing term with leading coefficient k_{2}.

We assume
$\left(p_{1}\left(t_{0}\right), p_{2}\left(t_{0}\right), \ldots, p_{m}\left(t_{0}\right)\right) \in B^{m}=\left\{p \mid \sum_{i=1}^{m} p_{i}=1, p_{i}>0 \quad\right.$ for $\left.\quad i=1,2, \ldots, m\right\}$.

Theorem 1. (Itoh 1981). Let there exist a unique $q \in B^{m}$ which satisfies $q \circ q-q=0$. Then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i=1}^{m} q_{i} \log p_{i}(t)=2 k_{2} \sum_{i=1}^{m} q_{i}\left(\sum_{j=1}^{m} a_{i j} p_{j}(t)\right)^{2} \geqslant 0 \tag{5}
\end{equation*}
$$

if $\left(p_{1}\left(t_{0}\right), p_{2}\left(t_{0}\right), \ldots, p_{m}\left(t_{0}\right)\right) \in B^{m}$.

Remark. It is easy to prove that if there exists a unique $q \in B^{m}$ such that $q \circ q-q=0$, then $m \neq 2$. Also, if $m=3$, then A must have the form

$$
A=\left(\begin{array}{ccc}
0 & a & -b \\
-a & 0 & c \\
b & -c & 0
\end{array}\right)
$$

where a, b, and c are all positive or all negative. In this case, $q_{1}=c / S, q_{2}=b / S, q_{3}=$ a / S, where $S=a+b+c$.

3. Relative entropy near the equilibrium

Theorem 2. For q as defined in theorem 1 , let $p(t) \in B$ and $r(t) \in B, t \geqslant t_{0}$, be two distinct solutions of the ternary system (4), $p\left(t_{0}\right) \neq r\left(t_{0}\right)$. Let $p=q+\delta, r=q+\varepsilon$. If $\max _{i}\left|\delta_{i} / q_{i}\right|$ and $\max _{i}\left|\varepsilon_{i} / q_{i}\right|$ are sufficiently small, then

$$
\begin{equation*}
\frac{\mathrm{d} H(p(t), r(t))}{\mathrm{d} t} \approx-2 k_{2} \sum_{i} q_{i}\left(\sum_{j} a_{i j}\left(p_{j}-r_{j}\right)\right)^{2}<0 \tag{6}
\end{equation*}
$$

Proof. We have
$H(p, r)=\sum_{i}\left(q_{t}+\delta_{i}\right) \log \frac{p_{i}}{r_{t}}$

$$
\begin{equation*}
=\sum_{i}\left(q_{i} \log p_{t}+\delta_{i} \log p_{i}-q_{i} \log r_{i}-\delta_{i} \log r_{i}\right) \tag{7}
\end{equation*}
$$

$\frac{\mathrm{d}}{\mathrm{d} t} H(p, r)=\frac{\mathrm{d}}{\mathrm{d} t} \sum_{i}\left(q_{i} \log p_{i}-q_{i} \log r_{i}\right)+\frac{\mathrm{d}}{\mathrm{d} t} \sum_{i}\left(\delta_{i} \log p_{i}-\delta_{i} \log r_{i}\right)$.
Put
$\alpha_{i}=\frac{(p \circ p-p)_{i}}{p_{i}}=\sum_{j} a_{i j} p_{j} \quad \gamma_{i}=\frac{(r \circ r-r)_{i}}{r_{i}}=\sum_{j} a_{i j} r_{j}$.
We have from (5)

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i}\left(q_{i} \log p_{i}-q_{i} \log r_{i}\right) \equiv k_{2} I_{1}=2 \dot{k}_{2} \sum_{i}\left(q_{i} \alpha_{i}^{2}-q_{i} \gamma_{i}^{2}\right) \tag{9}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \delta=k_{1}(p \circ p-p)+k_{2}((p \circ p) \circ p-p) \tag{10}
\end{equation*}
$$

we have

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i}\left(\delta_{i} \log p_{i}-\delta_{i} \log r_{i}\right)=\sum_{i}\left(\left(k_{1}(p \circ p-p)+k_{2}((p \circ p) \circ p-p)\right)_{i}\left(\log p_{i}-\log r_{i}\right)\right. \\
+\delta_{i} \frac{k_{1}(p \circ p-p)_{i}+k_{2}((p \circ p) \circ p-p)_{i}}{p_{i}} \\
\left.-\delta_{i} \frac{k_{1}(r \circ r-r)_{i}+k_{2}((r \circ r) \circ r-r)_{i}}{r_{i}}\right) \\
\quad=k_{1} I_{2}+k_{2} I_{3} \tag{11}
\end{gather*}
$$

where
$I_{2}=\sum_{i}\left((p \circ p-p)_{i}\left(\log p_{i}-\log r_{i}\right)+\delta_{i} \frac{(p \circ p-p)_{i}}{p_{i}}-\delta_{i} \frac{(r \circ r-r)_{i}}{r_{i}}\right)$.
and
$I_{3} \equiv \sum_{i}\left(((p \circ p) \circ p-p)_{i}\left(\log p_{i}-\log r_{i}\right)+\delta_{i} \frac{((p \circ p) \circ p-p)_{i}}{p_{1}}-\delta_{i} \frac{((r \circ r) \circ r-r)_{i}}{r_{i}}\right)$.

Hence

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} H=k_{2} I_{1}+k_{1} I_{2}+k_{2} I_{3} \tag{14}
\end{equation*}
$$

Since

$$
\sum_{i} p_{i} \alpha_{i}=0 \quad \sum_{i} q_{i} \alpha_{i}=0
$$

and

$$
\sum_{i}\left(\varepsilon_{i} \alpha_{i}+\delta_{i} \gamma_{i}\right)=\sum_{i, j}\left(a_{i j} \varepsilon_{i} \delta_{j}+a_{i j} \delta_{i} \varepsilon_{j}\right)=0
$$

we have

$$
\begin{align*}
I_{2} & =\sum_{i}\left(p_{i} \alpha_{i} \log p_{i}+\delta_{i} \alpha_{i}-p_{i} \alpha_{i} \log r_{i}-\delta_{i} \gamma_{i}\right) \\
& =\sum_{i}\left(p_{i} \alpha_{i} \log \left(q_{i}+\delta_{i}\right)+\delta_{i} \alpha_{i}-p_{i} \alpha_{i} \log \left(q_{i}+\varepsilon_{i}\right)-\delta_{i} \gamma_{i}\right) \\
& \approx \sum_{i}\left(p_{i} \alpha_{i}\left(\frac{\delta_{i}}{q_{i}}-\frac{\varepsilon_{i}}{q_{i}}\right)+\delta_{i} \alpha_{i}-\delta_{i} \gamma_{i}\right) \\
& \approx \sum_{i}\left(2 \delta_{i} \alpha_{i}-\varepsilon_{i} \alpha_{i}-\delta_{i} \gamma_{i}\right) \\
& =\sum_{i}\left(2 \delta_{i} \alpha_{i}+2 q_{i} \alpha_{i}-2 q_{i} \alpha_{i}-\varepsilon_{i} \alpha_{i}-\delta_{i} \gamma_{i}\right) \\
& =\sum_{i}\left(2 p_{i} \alpha_{i}-2 q_{i} \alpha_{i}-\varepsilon_{i} \alpha_{i}-\delta_{i} \gamma_{i}\right)=0 . \tag{15}
\end{align*}
$$

Putting
$A_{i}=\frac{((p \circ p) \circ p-p \circ p)_{i}}{p_{i}} \quad$ and $\quad \Gamma_{i}=\frac{((r \circ r) \circ r-r \circ r)_{i}}{r_{i}}$
we have (Itoh 1981, p 56)

$$
\sum_{i} q_{i} A_{i}=2 \sum_{i} q_{i} \alpha_{i}^{2} \quad \text { and } \quad \sum_{i} q_{i} \Gamma_{i}=2 \sum_{i} q_{i} v_{i}^{2}
$$

Taking into account $(p \circ p) \circ p-p=(p \circ p) \circ p-p \circ p+p \circ p-p$ and

$$
I_{2}=\sum_{i}\left(p_{i} \alpha_{i} \log p_{i}+\delta_{i} \alpha_{i}-p_{i} \alpha_{i} \log r_{i}-\delta_{i} \gamma_{i}\right) \approx 0
$$

we have

$$
\begin{align*}
I_{3}=\sum_{i}\left(\left(p_{i} A_{i}\right.\right. & \left.\left.+p_{i} \alpha_{i}\right) \log p_{i}+\delta_{i}\left(A_{i}+\alpha_{i}\right)-\left(p_{i} A_{i}+p_{i} \alpha_{i}\right) \log r_{i}-\delta_{i}\left(\Gamma_{i}+\gamma_{i}\right)\right) \\
& \approx \sum_{i}\left(p_{i} A_{i} \log \left(q_{i}+\delta_{i}\right)+\delta_{i} A_{i}-p_{i} A_{i} \log \left(q_{i}+\varepsilon_{i}\right)-\delta_{i} \Gamma_{i}\right) \\
& \approx \sum_{i}\left(p_{i} A_{i}\left(\frac{\delta_{i}}{q_{i}}-\frac{\varepsilon_{i}}{q_{i}}\right)+\delta_{i} A_{i}-\delta_{i} \Gamma_{i}\right) \\
& =\sum_{i}\left(\left(q_{i}+\delta_{i}\right) A_{i}\left(\frac{\delta_{i}}{q_{i}}-\frac{\varepsilon_{i}}{q_{i}}\right)+\delta_{i} A_{i}-\delta_{i} \Gamma_{i}\right) \\
& \approx \sum_{i}\left(2 \delta_{i} A_{i}-\varepsilon_{i} A_{i}-\delta_{i} \Gamma_{i}\right) \tag{16}
\end{align*}
$$

Since $\delta_{i}+q_{i}=p_{i}$ and $\sum_{i} p_{i} A_{i}=0$,

$$
\begin{align*}
\sum_{i}\left(2 \delta_{t} A_{i}-\varepsilon_{i} A_{i}-\delta_{t} \Gamma_{t}\right) & =\sum_{i}\left(2 \delta_{i} A+2 q_{i} A_{i}-2 q_{i} A_{i}-\varepsilon_{i} A_{t}-\delta_{i} \Gamma_{i}\right) \\
& =\sum_{i}\left(-\varepsilon_{t} A_{i}-\delta_{i} \Gamma_{i}-2 q_{t} A_{t}\right) \\
& =-\sum_{i}\left(\varepsilon_{i} A_{i}+\delta_{i} \Gamma_{i}\right)-4 \sum_{i} q_{i} \alpha_{i}^{2} \tag{17}
\end{align*}
$$

Since

$$
\begin{align*}
(p \circ p-p) \circ p & =2\left(\sum_{i, j=1}^{m} a_{i j} p_{i} p_{j} E_{i}\right) \circ\left(\sum_{k=1}^{m} p_{k} E_{k}\right) \\
& =\sum_{i, j, k=1}^{m} a_{i j} p_{i} p_{j} p_{k}\left(E_{i}+2 a_{i k} E_{i}+E_{k}+2 a_{k i} E_{k}\right) \tag{18}
\end{align*}
$$

we have

$$
\begin{equation*}
\sum_{\rho} \varepsilon_{\rho} A_{\rho}=\sum_{\rho, j, k} \varepsilon_{\rho} a_{\rho j} p_{j} p_{k}+2 \sum_{\rho, j, k} \varepsilon_{\rho} a_{\rho j} a_{\rho k} p_{j} p_{k}+\sum_{i, j, \rho} \varepsilon_{\rho} a_{i j} p_{i} p_{j}+2 \sum_{i, j, \rho} \varepsilon_{\rho} a_{i j} a_{\rho i} p_{i} p_{j} \tag{19}
\end{equation*}
$$

Since

$$
\sum_{j} a_{i j} \varepsilon_{j}=\sum_{j} a_{i j} r_{j} \quad \text { and } \quad \sum_{j} a_{i j} \delta_{j}=\sum_{j} a_{i j} p_{j}
$$

we have

$$
\begin{aligned}
& \sum_{\rho, j, k} \varepsilon_{\rho} a_{\rho j} p_{j} p_{k}=-\sum p_{j} \gamma_{j} \\
& \sum_{\rho, j, k} \varepsilon_{\rho} a_{\rho j} a_{\rho k} p_{j} p_{k}=\sum_{\rho} \varepsilon_{\rho} \alpha_{\rho}^{2} \\
& \sum_{i, j, \rho} \varepsilon_{\rho} a_{i j} a_{\rho i} p_{i} p_{j}=-\sum_{i} p_{i} \alpha_{i} \gamma_{i}
\end{aligned}
$$

Hence

$$
\begin{align*}
\sum_{\rho} \varepsilon_{\rho} A_{\rho} & =-\sum_{j} p_{j} \gamma_{j}+2 \sum_{\rho} \varepsilon_{\rho} \alpha_{\rho}^{2}-2 \sum_{i} p_{i} \alpha_{i} \gamma_{i} \tag{20}\\
\sum_{\rho} \delta_{\rho} \Gamma_{\rho} & =-\sum_{j} r_{j} \alpha_{j}+2 \sum_{\rho} \delta_{\rho} \gamma_{\rho}^{2}-2 \sum_{i} r_{i} \alpha_{i} \gamma_{i} \tag{21}
\end{align*}
$$

The middle summations on the right-hand side of (20) and (21) will be neglected because these terms are negligible near equilibrium.

Since

$$
\begin{aligned}
& \sum_{i}\left(r_{i} \alpha_{i}+p_{i} \gamma_{i}\right)=\sum_{i, j}\left(a_{i j} r_{i} p_{j}+a_{i j} p_{i} r_{j}\right)=0 \\
& \sum_{i} p_{i} \alpha_{i} \gamma_{i} \approx \sum_{i} q_{i} \alpha_{i} \gamma_{i} \quad \text { and } \quad \sum_{i} r_{i} \alpha_{i} \gamma_{i} \approx \sum_{i} q_{i} \alpha_{i} \gamma_{i}
\end{aligned}
$$

we have

$$
\begin{equation*}
I_{3} \approx-4 \sum_{i} q_{i} \alpha_{i}^{2}+4 \sum_{i} q_{i} \alpha_{i} \gamma_{i} . \tag{22}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i} p_{1} \log \frac{p_{i}}{r_{i}}=k_{2} I_{1}+k_{1} I_{2}+k_{2} I_{3} \approx-2 k_{2} \sum_{i} q_{1}\left(\alpha_{i}-\gamma_{i}\right)^{2} \tag{23}
\end{equation*}
$$

Example 1. We consider the model which satisfies (i) and (iv) of section 2, and the following (ii') and (iii').
(ii') Each particle participates in triple collision on average $\mathrm{d} t$ times per time length $\mathrm{d} t$. A triple collision is expressed as in figure 1 , in which particle X collides with particle Y, and Y collides with particle Z.
(iii') Each colliding triple is equally likely to be chosen.

Figure 1. Two successive binary collisions make a ternary collision in which particle X collides with particle Y, and Y collides with particle Z.

Figure 2. Three successive binary collisions make a ternary collision in which particle X collides with particle Y, Y collides with particle Z, and particle Z collides with particle X.

From the above setting, we have the following equation with $p(t)=\sum_{i=1}^{m} p_{i}(t) E_{i} \in$ A^{m} :

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p(t)=\frac{1}{3} p(t) \circ p(t)+\frac{2}{3} p(t) \circ(p(t) \circ p(t))-p(t)
$$

Each of $n \mathrm{~d} t$ particles participates in a ternary collision in time interval $\mathrm{d} t$. Each $\frac{1}{3} n \mathrm{~d} t$ particles of them takes the part of X in figure 1 . Each of the remaining $\frac{2}{3} n \mathrm{~d} t$ particles takes the part of Y or Z in figure 1 . So the above equation is reasonable.

In the case of low density, we need not consider the effect of triple collisions. So k_{2} is very small. In the case of higher density k_{2} is not so small.

Example 2. In this example, (ii') of the previous example is replaced by the following (ii"):
(ii") Each particle participates in a triple collision on average $\mathrm{d} t$ times per time length dt . A triple collision consists of three successive binary collisions as in figure 2, that is, particle X collides with particle Y, Y collides with particle Z, and finally particle Z collides with particle X.
We consider $p \in A^{3}$ where $a_{12}=a_{23}=a_{31}=\frac{1}{2}$, in which case $q=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Then the law of change is given by $(\mathrm{d} / \mathrm{d} t) p=p \circ(p \circ p)-p$.

Since $p \circ(p \circ p)-p=p \circ(p \circ p)-\left(\sum_{i=1}^{3} p_{l}\right)^{2} p$, we have

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} p_{1}=-p_{1} p_{2}^{2}-2 p_{1}^{2} p_{2}+p_{3} p_{1}^{2}+2 p_{3}^{2} p_{1} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}=-p_{2} p_{3}^{2}-2 p_{2}^{2} p_{3}+p_{1} p_{2}^{2}+2 p_{1}^{2} p_{2} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} p_{3}=-p_{3} p_{1}^{2}-2 p_{3}^{2} p_{1}+p_{2} p_{3}^{2}+2 p_{2}^{2} p_{3}
\end{aligned}
$$

where $-p_{1} p_{2}^{2}$ corresponds to the event that one particle of species 1 interacts with two particles of species 2 and changes to one particle of species $2,-2 p_{1}^{2} p_{2}$ corresponds to the event that two particles of species 1 interact with one particle of species 2 and change to two particles of species $2, p_{3} p_{1}^{2}$ corresponds to the event that one particle of species 3 interacts with two particles of species 1 and changes to one particle of species $1,2 p_{3}^{2} p_{1}$ corresponds to the event that two particles of species 3 interact with one particle of species 1 and change to two particles of species 1.

A triple which consists of one particle of species 1 , one particle of species 2 , and one particle of species 3 , makes no change for p_{1} in total. Thus we see that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{1}=-p_{1} p_{2}^{2}-2 p_{1}^{2} p_{2}+p_{3} p_{1}^{2}+2 p_{3}^{2} p_{1}
$$

is reasonable.

4. Discussion

For conservative linear systems (finite-state Markov processes in discrete or continuous time), the relative entropy of two distinct trajectories is a monotonically decreasing function of time. The two distinct trajectories of our nonlinear conservative system also display monotonically decreasing relative entropy near equilibrium.

For Lotka-Volterra systems of binary interactions with anti-symmetry, the relative entropy of two distinct trajectories continues to oscillate under the motion. If a LotkaVolterra system has ternary interactions with anti-symmetry as well as binary interaction, the relative entropy of two distinct trajectories has damped oscillations with time far from equilibrium, and is monotonically decreasing near equilibrium as can be observed in the numercal study (figure 3).

To understand the values k_{1} and k_{2} of (4), we give a discrete model of the binary and the ternary interaction to simplify the discussion. Consider an occupancy problem for a system of n particles (Johnson et al 1992, pp 420-2). Suppose there are c places, $1,2, \ldots, c$, in which each particle can be. In unit time the n particles are distributed on the c places at random. All c^{n} arrangements are assumed to be equally probable. Two particles, in a particular place, are considered to be in a binary collision. The three particles, in a particular place, are considered to be in a ternary collision given in figure 2. The probability $\operatorname{Pr}(X=x)$ that there are x particles $(x \leqslant n)$ in a particular place is $\operatorname{Pr}(X=x)={ }_{n} C_{x}(1 / c)^{x}(1-1 / c)^{n-x}$. The value $\operatorname{Pr}(X=3) / \operatorname{Pr}(X=2)$ could represent k_{2} / k_{1}. Neglecting collisions of order higher than three, we have equation (4). When $n=c^{9 / 10}$ for $c=100000, \operatorname{Pr}(X=3) / \operatorname{Pr}(X=2)$ is approximately 0.105 , $\operatorname{Pr}(X=4) / \operatorname{Pr}(X=2)$ is approximately 0.0083 . In figure 3 , we give a numerical study for the case $k_{1}=20$ and $k_{2}=2.1$, neglecting interactions higher than three for the two trajectories which start from ($0.3,0.3,0.4$) and ($0.35,0.35,0.3$) for $p \in A^{3}$ where $a_{12}=a_{23}=a_{31}=\frac{1}{2}$. Our numerical studies show that k_{2} seems to determine the speed of approach to equilibrium almost independently of k_{1}.

Figure 3. The relative entropy of the two distinct trajectories has damped oscillations with time far from equilibrium and is monotonically decreasing near equilibrium. The two trajectories start from ($0.3,0.3 .0 .4$) and $(0.35,0.35,0.3)$ for $p \in A^{3}$ with $a_{12}=a_{23}=a_{31}=\frac{1}{2}$, where $k_{1}=20$ and $k_{2}=2.1$.

Acknowledgments

This work was supported in part by US National Science Foundation grant BSR 92-07293. JEC thanks the Japan Society for the Promotion of Science for a fellowship in 1990 that led to this collaboration, and Mr and Mrs William T Golden for hospitality during this work. The authors are grateful to the referees for helpful comments.

References

Cohen E G D 1973 The generalization of the Boltzmann equation to higher densities The Boltzmann Equation ed E G D Cohen and W Thirring (New York: Springer) pp 157-76
Cohen J E, Derriennic Y and Zbaganu Gh 1993a Majorization, monotonicity of relative entropy, and stochastic matrices Proc. Doeblin Conf. ed H Cohn (Providence, RI: American Mathematical Society) (Contemporary Mathematics 149 251-9)
Cohen J E, Iwasa Y, Rautu Gh, Ruskai M B, Seneta E and Zbaganu Gh 1993b Relative entropy under mappings by stochastic matrices Linear Algebra and Its Applications 179 pp 211-35
Csiszarr I 1963 Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten Magyar Tud. Akad. Mat. Kutató Int. Közl 885-108 (1965 Math. Rev. 29 333, 1671)
Goel N S, Maitra S C and Montroll E W 1971 On the Volterra and other nonlinear models of interacting populations Rev. Mod. Phys. 43 231-76
Hutchinson G E 1947 A note on the theory of competition between two social species Ecology 28 319-21
Itoh Y 1971 The Boltzmann equation on some algebraic structure concerning struggle for existence Proc. Japan Acad. 47 854-8
--1973 On a ruin problem with interaction Ann. Inst. Star. Math. 25 635-41

- 1975 An H-theorem for a system of competing species Proc. Japan Acad. 51 374-9
——1979 Random collision models in oriented graphs J. Appl. Prob. 16 36-44
- 1981 Non-associative algebra and Lotka-Volterra equation with ternary interaction Nonlinear Analysis 5 53-6

Johnson N L, Kotz S and Kemp A W 1992 Univariate Discrete Distributions (New York: Wiley)
Kac M 1959 Probability and Related Topics in Physical Sciences (London: Interscience)
Kaplan J L and Yorke J A 1979 Non-associative, real algebras and quadratic differential equations Nonlinear Analysis TMA 3 49-51
Kerner E H 1957 A statistical mechanics of interacting biological species Bull. Muth. Biophys. 19 121-45
—— 1959 Further considerations on the statistical mechanics of biological associations Bull. Math. Biophys. 21 217-55
Kimura M 1958 On the change of population fitness by natural selection Heredity 12 145-67
Lotka A J 1925 Elements of Physical Biology (Williams and Wilkins)
Markus L 1960 Quadratic differential equations and non-associative algebras Contributions to the Theory of Nonlinear Oscillations ed L Cesan, J Lasalle and S Lefschetz (Princeton, NJ: Princeton University Press) pp 185-213
Mather K 1969 Selection through competition Heredity 24 529-40
McKean H P 1966 Speed of approach to equilibrium for Kac's caricature of Maxwellian gas Rattonal Mech. Anal. 21 343-67
Moran P A P 1961 Entropy, Markov processes and Boltzmann's H-theorem Proc. Camb. Phil. Soc. 57 833-42
Morimoto T 1963 Markov processes and the H-theorem J. Phys. Soc. Japan 18 328-31
Sengers J V 1973 The three-particle collision term in the generalized Boltzmann equation The Boltzmann Equation ed E G D Cohen and W Thirring (New York: Springer) pp 177-208
Tainaka K 1988 Lattice model for the Lotka-Volterra system J. Phys. Soc. Japan 57 2588-90
Tainaka K and Itoh Y 1991 Topological phase transition of biological ecosystems Europhys. Lett. 15 399-404
Volterra V 1931 Leçons sur ta Théorie Mathématique de la Lutte pour la Vie Cahiers Scientifiques VII (Parts: Gauthier-Villars)

