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Abstract. For consmative linear systems (finite-state Markov processes in discrete or 
continuous time). the relative entmpy of two distinct trajectories is a monotonically decreasing 
function of time. These results naturally raise the question whether distinct trajectories of 
nonlinear consewative systems also display monotonically decreoring relative entropy. For 
binay interacting Loika-Volterra systems with nnti-symmetry, the relative entropy oscillates 
under the motion. The main new result of this paper is thar for ternary interacting Lotka-Voltena 
systems with anti-symmetry, the relative entropy of two distinct trajectories is a monotonically 
decreasing function of time near equilibrium. Far from equilibrium, distinct trajectories of 
ternary htko-Voltema systems with anti-symmetry need not have monotonically decreasing 
relative entropy. 

1. Introduction 

Classical Lotka-Volterra equations (Lotka 1925, Volterra 193 1) model pairwise interactions 
of individuals and, by extension, pairwise interactions of species. For example, let pi@) be 
the fraction of individuals who belong to species i at time t .  Kimura (1958) and Mather 
(1969) studied the model 

These are quadratic differential equations because products of p < ( t )  appear on the 
right. Quadratic differential equations have been analysed using non-associative algebras 
by Markus (1960), McKean (1966), and Kaplan and Yorke (1979). By an analogy with the 
kinetic theory of gases, Itoh (1971, 1973, 1975, 1979, 1981) derived these Loth-Voltema 
equations from a model of random collisions of particles of different species and used 
non-associative algebra to analyse the equations. Under the assumption of anti-symmetry 
~ i j  = -qi, a well known important characteristic of these equations is that there exists a 
potential function that is conserved under the motion of the system (Kerner 1957, 1959, Goel 
et al 1971). It follows that if the initial condition of the system differs from equilibrium, 
then the system never approaches equilibrium. 
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Binary interactions may not be sufficient to model all situations of biological interest. At 
high population densities, three, four or more individuals may interact as for the Boltzmann 
equation for higher densities (Cohen 1973, Sengers 1973). As Mather (1969) stated, a plant 
may feel the effects of competition from a number of other individuals growing at various 
distances from it and interacting with one another in their effects on it. Models with ternary 
interactions have been investigated at least since Hutchinson (1947); Goel et a1 (1971, 
pp 266-9) review many other generalizations. Itoh (1975. 1981) analysed a differential 
equations model with ternary interactions using non-associative algebra. He proved that a 
certain Lyapunov function (given explicitly in theorem 1 below) increases until the system 
attains equilibrium. For the corresponding model with only binary interactions, the same 
Lyapunov function is invariant with respect to time. Thus the term that represents ternary 
interactions makes a qualitative difference to the model's behaviour and justifies, from the 
mathematical point of view, the study of models with ternary and higher-order interactions. 
A simulation study of competing species in which individuals are located on a regular 
lattice (Tainaka 1988, Tainaka and Itoh 1991) shows a stability that could be explained by 
the mathematical results on ternary and higher-order interactions. 

From the empirical point of view. if an  increase in the density of many interacting 
species were observed to lead to an increase in the stability of the size of the interacting 
populations, the difference between models with binary interactions and the models with 
ternary interactions might provide one explanation, Of course, one would have to investigate 
and exclude alternative explanations, such as a possible loss of the exact anti-symmetry 
condition as a result of increased population density. 

For conservative linear systems (finite-state Markov processes in discrete or continuous 
time), it has been known for a long time (Moran 1961, hlorimoto 1963, CsiszAr 1963) 
that the relative entropy of two distinct trajectories is a monotonically decreasing function 
of time. Cohen et al (1993a, b) give the following improvement. Let p and r be two 
m-element probability vectors with positive elements. The relative entropy H ( p ,  r )  of p 
and r is defined by H(p .  r )  = E, pi log(pi/ri) .  If A is an n x m matrix with elements 
a;j 0 such that E, aij = 1, j = I , .  . . , m, then H ( A p .  A r )  < & ( A ) H ( p ,  r ) ,  where 
8 ( A )  = (+)maj., E:=, jaij - a;il < 1. An analogous result for Markov processes in 
continuous time bounds d log  H ( p ( r ) ,  r(r))/dr below zero. 

These results naturally raise the question whether distinct trajectories of nonlinear 
conservative systems also display monotonically decreasing relative entropy. For binav 
Lotka-Volterra systems with anti-symmetry, the answer is no, because the relative entropy 
oscillates under the motion (Kemer 1957, 1959, Goel et al 1971). The main new result 
of this paper (theorem 2) is that. for ternary Lotka-Volterra systems with anti-symmetry, 
the answer is yes near equilibrium. Far from equilibrium, distinct trajectories of ternary 
Lotka-Volterra systems with anti-symmetry need not have monotonically decreasing relative 
entropy. 

2. Random collision model for competitive interaction a n d  non-associative algebra 
Am for a Lotka-Volterra equation 

We consider the following random collision model. 

(i) There are m species labelled 1,2, . . . , m whose numbers of particles are, at time t ,  
nl(t). ndr) ,  . . . , n,( t ) ,  respectively, with n , ( r )  + nz(r) + . . + n,(t) = n ,  where n is 
constant. 

(ii) Each particle collides with another particle on average d t  times per time length dt .  
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(iii) Each particle is in a chaotic bath of particles. Each colliding pair is equally likely to 
be chosen. 

(iv) For i, j = 1,2, . . . , m ,  by a collision, a particle of species i and a particle of species j 
become two particles of species i with probability 4 + aij, and two particles of species 
j with probability - ajj, where aij = -aji and -4 < aij < $. 
When n is sufficiently large, we can derive equations in the following way. 
Each of ( (nj( t ) /n)dt)ni( t )  particles of species i collides with a particle of species j and 

remains in species i with probability 4 +aij. Each of ((ni(f)/n)dt)nj(t) particles of species 
j collides with a particle of species i and changes to species i with probability i + aij. So 
we have 

d n i ( t ) = n i ( f + d f ) - n , ( t ) .  

Put ni(t)/n = p i ( t ) .  then we have 

We define the following non-associative algebra Am to extend our discussion to ternary 
and higher-order interactions. 

Definition. The non-associative algebra Am is defined as follows: 

is  an m-dimensional linear space over a field R (which here is always the real numbers) 
which is generated by linearly independent elements E;. i = 1,2, . . . , m. 
(U) The products of the basis elements are defined as 

Ei 0 Ej = (4 + U i j ) E i  + (4 + U j i ) E j  

a. .  - -a . .  - l G a . . < l  - and 2 ' 1 ' 2  

where 

(111) The product x o y of two elements 

is defined as 

Am has the following properties. 
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Property 1. 

Y Iroh and J E Cohen 

We see from the above definition that 

E, 0 E, = Ej 0 Ei E; 0 E; = E ; .  

Thus the algebra is commutative. 
Hereafter we write the ith component of x E Am as x i .  

Properry 2. For x ,  y E A"', we have 

Using the non-associative algebra A"', equation ( 2 )  is expressed by 

d 
% P ( t )  = f ( t ) o f ( f ) - f ( t ) .  (3) 

The system with ternary interactions is represented by 

d 
- A t )  = h ( p ( t )  0 p ( t )  - p ( 0 )  + k z f ( f ( t )  0 p ( W  0 ~ ( 0  - A t ) )  dt 

for At) E A m .  

(4) 

Using property 2, it is obvious that C i ( ( p ( t )  o p ( r ) )  o p ( f ) ) i  = z i ( p ( t )  o p ( t ) ) i  = 
Ci(p(r))i = 1, hence the binary system and the ternary system are conservative, i.e. xi dpi(t)/dr = 0. At first glance, definition (3) of the system with ternary interactions 
appears to have a strange asymmetry in it. Why does the right-hand side not contain an 
additional term k s ( p ( t )  o ( p ( t )  o p(t ) )  - p(r) )?  The answer is that, because the algebra 
A"' is commutative, the term that is apparently missing would be exactly equivalent to the 
existing term with leading coefficient k2. 

We assume 

I m 

(pl(ro) ,  p2(to). . . . , p,(tO)) E B~ = = I .  pi > o for i = I ,  2 , .  . . , m . 

Theorem I .  (Itoh 1981). Let there exist a unique q E B"' which satisfies q o q - q = 0. 
Then 

Remark. 
then m # 2. Also, if m = 3, then A must have the form 

It is easy to prove that if there exists a unique q E B"' such that q o q - q = 0, 

0 a -b 

. = ( ; a  :c ; )  
where a ,  b, and c are all positive or all negative. In this case, q, = c / S ,  q2 = b / S ,  q3  = 
a / S ,  where S = a + b -!- c. 
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3. Relative entropy near the  equilibrium 

Theorem 2. For q as defined in theorem 1, let p ( t )  E B and r ( t )  E B ,  t 2 to, be two 
distinct solutions of the ternary system (4), p( t0 )  # r(t0). Let p = q + 6 ,  t- = q + E .  I f  
maxi ISi/qil and maxi Isi/qil are sufficiently small, then 

Put 

We have from (5) 

(9) 
d - c(qi log pi - qi logri)  = k211 = 2kz x ( q i a :  - qiy:). 
dt 

(11) 

k l ( r  o r  - r) i  + kz( (r  o r )  o r  - r ) r  
T i  

-6, 

= k i l z  + k d 3  
where 

Hence 
d 
- H = k z l l + k l l z + k 2 1 3 .  d t  

(13) 

(14) 
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Since 

and 

we have 

Putting 

Y lroh and J E Cohen 

( ( r  o r )  o r  - r o r ) i  
and ri = A , -  ( ( P o P ) o P - P o P ) ;  

I -  
Pi ri 

we have (Itoh 1981, p 56) 

E q i A i  = 2 c q i a :  and c q i r ; = 2 c q i y : .  
i i i 

Taking into account ( p  o p )  o p - p = ( p  o p )  o p - p o p + p o p - p and 

12 = C ( p i a i  log pi + ~ia i  - piai logri - ~ y i )  a o 

we have 
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Thus we have 

Example 1. We consider the model which satisfies (i) and (iv) of section 2, and the 
following (ii') and (iii'). 

(ii') Each particle participates in triple collision on average dr times per time length dt. A 
triple collision is expressed as in figure 1, in which particle X collides with particle Y, 
and Y collides with particle 2. 

(iii') Each colliding triple is equally likely to be chosen. 

Figure 1. Two successive binary collisions make Figure 2. "ee successive binary collisions make 
a lemary collision in which particle X collides with a ternary collision in which particle X collides with 
particle Y,  and Y collides with particle 2 .  p.WliCk Y .  Y collides with panicle Z. and particle Z 

collides with panicle X. 

From the above setting, we have the following equation with p( t )  = ELl pi(t)Ei E 
A m :  

d 
ZP(0 = f P ( t )  0 P ( t )  + $ P ( t )  0 0 P ( 0 )  - P ( 0  

Each of n dt particles participates in a ternary collision in time interval dt. Each f n  dt 
particles of them takes the part of X in figure 1. Each of the remaining i n d t  particles takes 
the part of Y or 2 in figure 1. So the above equation is reasonable. 

In the case of low density, we need not consider the effect of triple collisions. So kz is 
very small. In the case of higher density kz  is not so small. 

Example 2. In this example, (ii') of the previous example is replaced by the following 
(ii"): 

(ii") Each particle participates in a triple collision on average dt times per time length dr. 
A triple collision consists of three successive binary collisions as in figure 2, that is, 
particle X collides with particle Y, Y collides with particle 2, and finally particle Z 
collides with particle X. 
We consider p E A3 where a12 = a= = agl  = i, in which case q = (i, i, 4). Then 

the law of change is given by (d/dt)p = p o ( p  o p )  - p. 
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Since p o ( p  o p )  - p = p o ( p  o p )  - (Cl=, p<)'p , we have 
d 2 
-PI = -PIP2 - 2p:pz + P3Pf f 2PfPl 

d 2 

dt 

-p2 = -P2p3 - 2p:p3 -k PIP: f 2p:p2 

d 
dt 

- P 3 = - P 3 P : - 2 P : P l  dt +PZP:.f2P,2P3 

where -pip: corresponds to the event that one particle of species I interacts with two 
particles of species 2 and changes to one particle of species 2, -2pfp2 corresponds to the 
event that two particles of species 1 interact with one particle of species 2 and change to 
two particles of species 2, p3p: corresponds to the event that one particle of species 3 
interacts with two particles of species 1 and changes to one particle of species 1. 2p:pl 
corresponds to the event that two particles of species 3 interact with one particle of species 
1 and change to two particles of species 1. 

A triple which consists of one particle of species 1, one particle of species 2, and one 
particle of species 3, makes no change for p1 in total Thus we see that 

d 
-PI dt = -P IP: -2p:p2+ p3p:+2p,2p1 

is reasonable. 

4. Discussion 

For conservative linear systems (finite-state Markov processes in discrete or continuous 
time), the relative entropy of two distinct trajectories is a monotonically decreasing function 
of time. The two distinct trajectories of our nonlinear conservative system also display 
monotonically decreasing relative entropy near equilibrium. 

For Lob-Volterra systems of binary interactions with anti-symmetry, the relative 
entropy of two distinct trajectories continues to oscillate under the motion. If a Lotka- 
Volterra system has ternary interactions with anti-symmetry as well as binary interaction, 
the relative entropy of two distinct trajectories has damped oscillations with time far from 
equilibrium, and is monotonically decreasing near equilibrium as can be observed in the 
numercal study (figure 3). 

To understand the values kl and kz of (4), we give a discrete model of the binary 
and the ternary interaction to simplify the discussion. Consider an occupancy problem 
for a system of n particles (Johnson et a[ 1992, pp 420-2). Suppose there are c places, 
1,2, . . . , c, in which each particle can be. In unit time the n particles are distributed 
on the c places at random. All c" arrangements are assumed to be equally probable. 
Two particles, in a particular place, are considered to be in a binary collision. The 
three particles, in a particular place, are considered to be in a ternary collision given in 
figure 2. The probability Pr(X = x) that there are x particles ( x  6 n )  in a particular 
place is Pr(X = x )  = nCx(l/c)z(l - I/c)"-". The value Pr(X = 3)/Pr(X = 2) 
could represent k z / k , .  Neglecting collisions of order higher than three, we have equation 
(4). When n = c9/'" for c = 100000, Pr(X = 3)/Pr(X = 2 )  is approximately 0.105. 
Pr(X = 4)/Pr(X = 2) is approximately 0.0083. In figure 3, we give a numerical study 
for the case kl = 20 and k2 = 2.1, neglecting interactions higher than three for the 
two trajectories which start from (0.3,0.3,0.4) and (0.35,0.35,0.3) for p E A3 w,here 

= aZ3 = a31 = $. Our numerical studies show that k2  seems to determine the speed of 
approach to equilibrium almost independently of kl. 
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Flgure 3. The relative entropy of the two distinct trajectories has damped oscillations with time 
far from equilibrium and is monotonically decreasing near equilihrium. The two trajectories 
sm from (0.3.0.3.0.4) and (0.35.0.35.0.3) for p E A3 with alz = a23 = a31 = i. where 
ki = 20 and kz = 2.1. 
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